Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610350

RESUMO

Microinjection is usually applied to the treatment of some retinal disorders, such as retinal vein cannulation and displaced submacular hemorrhage. Currently, the microinjection procedure is usually performed by using the viscous fluid control of a standard vitrectomy system, which applies a fixed air pressure through foot pedal activation. The injection process with the fixed pressure is uncontrollable and lacks feedback, the high flow rate of the injected drug may cause damage to the fundus tissue. In this paper, a liquid-driven microinjection system with a flow sensor is designed and developed specifically for fundus injection. In addition, a PID sliding mode control (SMC) method is proposed to achieve precise injection in the injection system. The experimental results of fundus simulation injection demonstrate that the microinjection system meets the requirements of fundus injection and reduces the impact of the injection process on the fundus tissue.


Assuntos
Abomaso , Veia Retiniana , Animais , Microinjeções , Simulação por Computador , Fundo de Olho
3.
Int Immunopharmacol ; 133: 112129, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652964

RESUMO

Lung injury in sepsis is caused by an excessive inflammatory response caused by the entry of pathogenic microorganisms into the body. It is also accompanied by the production of large amounts of ROS. Ferroptosis and mitochondrial dysfunction have also been shown to be related to sepsis. Finding suitable sepsis therapeutic targets is crucial for sepsis research. BTB domain-containing protein 7 (KBTBD7) is involved in regulating inflammatory responses, but its role and mechanism in the treatment of septic lung injury are still unclear. In this study, we evaluated the role and related mechanisms of KBTBD7 in septic lung injury. In in vitro studies, we established an in vitro model by inducing human alveolar epithelial cells with lipopolysaccharide (LPS) and found that KBTBD7 was highly expressed in the in vitro model. KBTBD7 knockdown could reduce the inflammatory response by inhibiting the secretion of pro-inflammatory factors and inhibit the production of ROS, ferroptosis and mitochondrial dysfunction. Mechanistic studies show that KBTBD7 interacts with FOXA1, promotes FOXA1 expression, and indirectly inhibits SLC7A11 transcription. In vivo studies have shown that knocking down KBTBD7 improves lung tissue damage in septic lung injury mice, inhibits inflammatory factors, ROS production and ferroptosis. Taken together, knockdown of KBTBD7 shows an alleviating effect on septic lung injury in vitro and in vivo, providing a potential therapeutic target for the treatment of septic lung injury.

4.
Med Phys ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452277

RESUMO

BACKGROUND: Biology-guided radiotherapy (BgRT) is a novel technology that uses positron emission tomography (PET) data to direct radiotherapy delivery in real-time. BgRT enables the precise delivery of radiation doses based on the PET signals emanating from PET-avid tumors on the fly. In this way, BgRT uniquely utilizes radiotracer uptake as a biological beacon for controlling and adjusting dose delivery in real-time to account for target motion. PURPOSE: To demonstrate using real-time PET for BgRT delivery on the RefleXion X1 radiotherapy machine. The X1 radiotherapy machine is a rotating ring-gantry radiotherapy system that generates a nominal 6MV photon beam, PET, and computed tomography (CT) components. The system utilizes emitted photons from PET-avid targets to deliver effective radiation beamlets or pulses to the tumor in real-time. METHODS: This study demonstrated a real-time PET BgRT delivery experiment under three scenarios. These scenarios included BgRT delivering to (S1 ) a static target in a homogeneous and heterogeneous environment, (S2 ) a static target with a hot avoidance structure and partial PET-avid target, and (S3 ) a moving target. The first step was to create stereotactic body radiotherapy (SBRT) and BgRT plans (offline PET data supported) using RefleXion's custom-built treatment planning system (TPS). Additionally, to create a BgRT plan using PET-guided delivery, the targets were filled with 18F-Fluorodeoxyglucose (FDG), which represents a tumor/target, that is, PET-avid. The background materials were created in the insert with homogeneous water medium (for S1 ) and heterogeneous water with styrofoam mesh medium. A heterogeneous background medium simulated soft tissue surrounding the tumor. The treatment plan was then delivered to the experimental setups using a pre-commercial version of the X1 machine. As a final step, the dosimetric accuracy for S1 and S2 was assessed using the ArcCheck analysis tool-the gamma criteria of 3%/3 mm. For S3 , the delivery dose was quantified using EBT-XD radiochromic film. The accuracy criteria were based on coverage, where 100% of the clinical target volume (CTV) receives at least 97% of the prescription dose, and the maximum dose in the CTV was ≤130% of the maximum planned dose (97 % ≤ CTV ≤ 130%). RESULTS: For the S1, both SBRT and BgRT deliveries had gamma pass rates greater than 95% (SBRT range: 96.9%-100%, BgRT range: 95.2%-98.9%), while in S2 , the gamma pass rate was 98% for SBRT and between 95.2% and 98.9% for BgRT plan delivering. For S3 , both SBRT and BgRT motion deliveries met CTV dose coverage requirements, with BgRT plans delivering a very high dose to the target. The CTV dose ranges were (a) SBRT:100.4%-120.4%, and (b) BgRT: 121.3%-139.9%. CONCLUSIONS: This phantom-based study demonstrated that PET signals from PET-avid tumors can be utilized to direct real-time dose delivery to the tumor accurately, which is comparable to the dosimetric accuracy of SBRT. Furthermore, BgRT delivered a PET-signal controlled dose to the moving target, equivalent to the dose distribution to the static target. A future study will compare the performance of BgRT with conventional image-guided radiotherapy.

5.
Funct Integr Genomics ; 24(1): 28, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340226

RESUMO

This study aims to explore the molecular regulation mechanism of ubiquitination-specific protease 7 (USP7) in facilitating the stemness properties of hepatocellular carcinoma (HCC). Gain-of-function and loss-of-function assays were conducted in SK-Hep1 and HepG2 cells transfected with USP7 overexpression/knockdown plasmids and USP7 inhibitor P22077. The proliferation, migration, invasion, and self-renewal capacity of hepatocellular carcinoma cells were detected by CCK-8, colony formation, Transwell, scratch, and tumor sphere formation, respectively. MS was performed to identify the potential substrate of USP7 following P22077 treatment. Co-IP assay was used to verify the interaction between USP7 and basic transcription factor 3 (BTF3) in HCC cells. The overexpression of USP7 could promote the proliferation, migration, invasion, and colony formation capacity of SK-Hep1 and HepG2 cells. Additionally, ectopic UPS7 enhanced the epithelial-mesenchymal transition (EMT) and stem-like characteristics of the HCC cells. In contrast, USP7 depletion by knockdown of USP7 or administrating inhibitor P22077 significantly inhibited these malignant phenotypes of SK-Hep1 and HepG2 cells. Following MS analysis, BTF3 was identified as a potential substrate for USP7. USP7 could interact with BTF3 and upregulate its protein level, while USP7 depletion significantly upregulated the ubiquitination levels. Overexpression of BTF3 partially rescue the inhibitory effects of USP7 depletion on the malignant phenotypes and stemness properties of SK-Hep1 and HepG2 cells. USP7 can promote the stemness and malignant phenotype of HCC by stabilizing BTF3.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Peptidase 7 Específica de Ubiquitina , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Tiofenos , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação , Fatores de Transcrição/metabolismo
6.
PLoS Genet ; 20(2): e1011152, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315726

RESUMO

Endocytosis and endolysosomal trafficking are essential for almost all aspects of physiological functions of eukaryotic cells. As our understanding on these membrane trafficking events are mostly from studies in yeast and cultured mammalian cells, one challenge is to systematically evaluate the findings from these cell-based studies in multicellular organisms under physiological settings. One potentially valuable in vivo system to address this challenge is the vitellogenic oocyte in Drosophila, which undergoes extensive endocytosis by Yolkless (Yl), a low-density lipoprotein receptor (LDLR), to uptake extracellular lipoproteins into oocytes and package them into a specialized lysosome, the yolk granule, for storage and usage during later development. However, by now there is still a lack of sufficient understanding on the molecular and cellular processes that control yolk granule biogenesis. Here, by creating genome-tagging lines for Yl receptor and analyzing its distribution in vitellogenic oocytes, we observed a close association of different endosomal structures with distinct phosphoinositides and actin cytoskeleton dynamics. We further showed that Rab5 and Rab11, but surprisingly not Rab4 and Rab7, are essential for yolk granules biogenesis. Instead, we uncovered evidence for a potential role of Rab7 in actin regulation and observed a notable overlap of Rab4 and Rab7, two Rab GTPases that have long been proposed to have distinct spatial distribution and functional roles during endolysosomal trafficking. Through a small-scale RNA interference (RNAi) screen on a set of reported Rab5 effectors, we showed that yolk granule biogenesis largely follows the canonical endolysosomal trafficking and maturation processes. Further, the data suggest that the RAVE/V-ATPase complexes function upstream of or in parallel with Rab7, and are involved in earlier stages of endosomal trafficking events. Together, our study provides s novel insights into endolysosomal pathways and establishes vitellogenic oocyte in Drosophila as an excellent in vivo model for dissecting the highly complex membrane trafficking events in metazoan.


Assuntos
Drosophila , Endossomos , Animais , Drosophila/genética , Drosophila/metabolismo , Endossomos/genética , Endossomos/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Oócitos/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Mamíferos/metabolismo
7.
Int J Biol Macromol ; 259(Pt 1): 129240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191105

RESUMO

Films with high barrier, flame-retardant, and antibacterial properties are beneficial in terms of food and logistics safety. Herein, a polyelectrolyte complex (PEC) of N-(2-hydroxyl)-propyl-3-trimethylammonium chitosan chloride (HTCC, chitosan derivative) and phytic acid (PA) was successfully prepared and then incorporated into a polyvinyl alcohol (PVA) matrix to fabricate a composite film with satisfactory barrier, fire-retardant, and antibacterial properties. The influence of HTCC/PA (HTPA) on the structural, physical and functional properties of the PVA matrix was investigated. Compared with the PVA film, PVA-HTPA6 film exhibited 3.38 times of flexibility and 83.33 % and 80.64 % of water vapor permeability and oxygen permeability, respectively. Benefiting from HTPA, the PVA-HTPA6 film exhibited outstanding flame-retardant capacity, with a high LOI value (33.30 %) and immediate self-extinguishing behaviour. Furthermore, the HTPA endowed the films with excellent antibacterial properties. Compared with other films, the PVA-HTPA6 film effectively maintained the quality of pork during storage at 4 °C for 9 days. Our findings indicate that the films are promising for packaging and logistics safety with oil-containing foods.


Assuntos
Quitosana , Retardadores de Chama , Quitosana/farmacologia , Quitosana/química , Álcool de Polivinil/química , Ácido Fítico , Polieletrólitos , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos
8.
Eur J Med Chem ; 264: 116009, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070430

RESUMO

Triple-negative breast cancer (TNBC) is an extremely aggressive tumor with limited treatment options and effectiveness. Dual-target inhibitors capable of simultaneously suppressing invasion may represent a promising therapeutic approach for TNBC. In this work, we developed a series of dual BRD4/Src inhibitors by connecting JQ1 and dasatinib using various linkers and evaluated their efficacy against TNBC both in vitro and in vivo. Among these compounds, HL403 demonstrated IC50 values of 133 nM for BRD4 inhibition and 4.5 nM for Src inhibition. Most importantly, HL403 not only exhibited potent anti-proliferative capabilities, but also effectively suppressed the invasion of MDA-MB-231 cells in vitro. Finally, the anti-tumor efficacy of HL403 was validated in a mouse MDA-MB-231 xenograft tumor model, achieving a tumor growth inhibition rate (TGI) of 70.7 %, which was superior to the combination of JQ1 and dasatinib (TGI = 54.0 %). Our research provides a promising and feasible new strategy for improving the treatment of TNBC.


Assuntos
Proteínas Nucleares , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Dasatinibe/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Fatores de Transcrição , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular
9.
Org Lett ; 26(12): 2343-2348, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38109522

RESUMO

The catalytic asymmetric construction of monoheteroaryl N-N axially chiral compounds and chiral five-membered aryl-based scaffolds remains challenging. Herein, we present a highly efficient enantioselective synthesis of monoheteroaryl N-N atropisomers via an asymmetric Paal-Knorr reaction, affording a diverse array of N-N amide-pyrrole atropisomers with excellent enantioselectivities. Gram-scale synthesis and post-transformations of the product demonstrated the synthesis utility of this method. Racemization experiments confirmed the configurational stability of these N-N axially chiral products. This study not only provides the first de novo cyclization example for accessing an asymmetric monoheteroaryl N-N scaffold but also offers a new member of the N-N atropisomer family with potential synthetic and medicinal applications.

10.
Bioinformatics ; 39(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37698984

RESUMO

MOTIVATION: Protein-protein interactions (PPI) are crucial components of the biomolecular networks that enable cells to function. Biological experiments have identified a large number of PPI, and these interactions are stored in knowledge bases. However, these interactions are often restricted to specific cellular environments and conditions. Network activity can be characterized as the extent of agreement between a PPI network (PPIN) and a distinct cellular environment measured by protein mass spectrometry, and it can also be quantified as a statistical significance score. Without knowing the activity of these PPI in the cellular environments or specific phenotypes, it is impossible to reveal how these PPI perform and affect cellular functioning. RESULTS: To calculate the activity of PPIN in different cellular conditions, we proposed a PPIN activity evaluation framework named ActivePPI to measure the consistency between network architecture and protein measurement data. ActivePPI estimates the probability density of protein mass spectrometry abundance and models PPIN using a Markov-random-field-based method. Furthermore, empirical P-value is derived based on a nonparametric permutation test to quantify the likelihood significance of the match between PPIN structure and protein abundance data. Extensive numerical experiments demonstrate the superior performance of ActivePPI and result in network activity evaluation, pathway activity assessment, and optimal network architecture tuning tasks. To summarize it succinctly, ActivePPI is a versatile tool for evaluating PPI network that can uncover the functional significance of protein interactions in crucial cellular biological processes and offer further insights into physiological phenomena. AVAILABILITY AND IMPLEMENTATION: All source code and data are freely available at https://github.com/zpliulab/ActivePPI.


Assuntos
Bases de Conhecimento , Mapas de Interação de Proteínas , Espectrometria de Massas , Fenótipo , Probabilidade
11.
Clin. transl. oncol. (Print) ; 25(8): 2499-2513, aug. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-222426

RESUMO

Purpose The de novo lipogenesis has been a longstanding observation in hepatocellular carcinoma (HCC). However, the prognostic value and carcinogenic roles of the enzyme Acetyl-CoA carboxylase alpha (ACACA) in HCC remains unknown. Methods The proteins with remarkable prognostic significance were screened out from The Cancer Proteome Atlas Portal (TCPA) database. Furthermore, the expression characteristics and prognostic value of ACACA were evaluated in multiple databases and the local HCC cohort. The loss-of-function assays were performed to uncover the potential roles of ACACA in steering malignant behaviors of HCC cells. The underlying mechanisms were conjectured by bioinformatics and validated in HCC cell lines. Results ACACA was identified as a crucial factor of HCC prognosis. Bioinformatics analyses showed that HCC patients with higher expression of ACACA protein or mRNA levels had poor prognosis. Knockdown of ACACA remarkably crippled the proliferation, colony formation, migration, invasion, epithelial−mesenchymal transition (EMT) process of HCC cells and induced the cell cycle arrest. Mechanistically, ACACA might facilitate the malignant phenotypes of HCC through aberrant activation of Wnt/β-catenin signaling pathway. In addition, ACACA expression was associated with the dilute infiltration of immune cells including plasmacytoid DC (pDC) and cytotoxic cells by utilization of relevant database analysis. Conclusion ACACA could be a potential biomarker and molecular target for HCC (AU)


Assuntos
Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , beta Catenina/metabolismo , Prognóstico
12.
Int J Biol Macromol ; 248: 125854, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37460074

RESUMO

With limited therapeutic options for hepatocellular carcinoma (HCC), it is of great significance to investigate the underlying mechanisms and identifying tumor drivers. MCM6, a member of minichromosome maintenance proteins (MCMs), was significantly elevated in HCC progression and associated with poor prognosis. Knockdown of MCM6 significantly inhibited the proliferation and migration of HCC cells with the increased apoptosis ratio and cell cycle arrest, whereas overexpression of MCM6 induced adverse effects. Mechanistically, MCM6 could decrease the P53 activity by inducing the degradation of P53 protein. In addition, MCM6 enhanced the ubiquitination of P53 by recruiting UBE3A to form a triple complex. Furthermore, overexpression of UBE3A significantly rescued the P53 activation and suppression of malignant behaviors mediated by MCM6 inhibition. In conclusion, MCM6 facilitated aggressive phenotypes of HCC cells by UBE3A/P53 signaling, providing potential biomarkers and targets for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Ubiquitinação , Família , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511074

RESUMO

Chronic liver diseases affect over a billion people worldwide and often lead to fibrosis. Nonalcoholic steatohepatitis (NASH), a disease paralleling a worldwide surge in metabolic syndromes, is characterized by liver fibrosis, and its pathogenesis remains largely unknown, with no effective treatment available. Necroptosis has been implicated in liver fibrosis pathogenesis. However, there is a lack of research on necroptosis specific to certain cell types, particularly the vascular system, in the context of liver fibrosis and NASH. Here, we employed a mouse model of NASH in combination with inducible gene knockout mice to investigate the role of endothelial necroptosis in NASH progression. We found that endothelial cell (EC)-specific knockout of mixed lineage kinase domain-like protein (MLKL), a critical executioner involved in the disruption of cell membranes during necroptosis, alleviated liver fibrosis in the mouse NASH model. Mechanistically, EC-specific deletion of Mlkl mitigated the activation of TGFß/Smad 2/3 pathway, disrupting the pro-fibrotic crosstalk between endothelial cells and hepatic stellate cells (HSCs). Our findings highlight endothelial MLKL as a promising molecular target for developing therapeutic interventions for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células Estreladas do Fígado/metabolismo , Células Endoteliais/metabolismo , Necroptose , Cirrose Hepática/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
14.
Int J Biol Macromol ; 244: 125205, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37302638

RESUMO

Intelligent labels provide customers with food freshness information. However, the existing label response is limited and can only detect a single kind of food. Here, an intelligent cellulose-based label with highly antibacterial activity for a multi-range sensing freshness was developed to overcome the limitation. Cellulose fibers were modified using oxalic acid to graft -COO- followed by binding chitosan quaternary ammonium salt (CQAS), the remaining charges of which attached methylene red and bromothymol blue to form response fibers and to further self-assemble into the intelligent label. CQAS electrostatically gathered the dispersed fibers, resulting in an increase in TS and EB of 282 % and 16.2 %, respectively. After that, the rest positive charges fixed the anionic dyes to broaden pH response range of 3-9 effectively. More significantly, the intelligent label exhibited highly antimicrobial activity, killing 100 % of staphylococcus aureus. The rapid acid-base response revealed the potential for practical application in which the label color from green to orange represented the milk or spinach from fresh to close to spoiled, and from green to yellow, and to light green indicated the pork fresh, acceptable, and close to spoiled. This study paves a way for the preparation of intelligent labels in large-scale and promote the commercial application to improve food safety.


Assuntos
Celulose , Quitosana , Celulose/química , Alimentos Marinhos/análise , Azul de Bromotimol , Qualidade dos Alimentos , Corantes , Quitosana/química , Embalagem de Alimentos/métodos , Concentração de Íons de Hidrogênio , Antocianinas/química
15.
Front Cell Dev Biol ; 11: 1174043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101615

RESUMO

The blood-brain barrier (BBB) is an important barrier separating the central nervous system from the periphery. The composition includes endothelial cells, pericytes, astrocytes, synapses and tight junction proteins. During the perioperative period, anesthesia and surgical operations are also a kind of stress to the body, which may be accompanied by blood-brain barrier damage and brain metabolism dysfunction. Perioperative blood-brain barrier destruction is closely associated with cognitive impairment and may increase the risk of postoperative mortality, which is not conducive to enhanced recovery after surgery. However, the potential pathophysiological process and specific mechanism of blood-brain barrier damage during the perioperative period have not been fully elucidated. Changes in blood-brain barrier permeability, inflammation and neuroinflammation, oxidative stress, ferroptosis, and intestinal dysbiosis may be involved in blood-brain barrier damage. We aim to review the research progress of perioperative blood-brain barrier damage and its potential adverse effects and potential molecular mechanisms, and provide ideas for the study of homeostasis maintenance of brain function and precision anesthesia.

16.
Clin Transl Oncol ; 25(8): 2499-2513, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36976490

RESUMO

PURPOSE: The de novo lipogenesis has been a longstanding observation in hepatocellular carcinoma (HCC). However, the prognostic value and carcinogenic roles of the enzyme Acetyl-CoA carboxylase alpha (ACACA) in HCC remains unknown. METHODS: The proteins with remarkable prognostic significance were screened out from The Cancer Proteome Atlas Portal (TCPA) database. Furthermore, the expression characteristics and prognostic value of ACACA were evaluated in multiple databases and the local HCC cohort. The loss-of-function assays were performed to uncover the potential roles of ACACA in steering malignant behaviors of HCC cells. The underlying mechanisms were conjectured by bioinformatics and validated in HCC cell lines. RESULTS: ACACA was identified as a crucial factor of HCC prognosis. Bioinformatics analyses showed that HCC patients with higher expression of ACACA protein or mRNA levels had poor prognosis. Knockdown of ACACA remarkably crippled the proliferation, colony formation, migration, invasion, epithelial-mesenchymal transition (EMT) process of HCC cells and induced the cell cycle arrest. Mechanistically, ACACA might facilitate the malignant phenotypes of HCC through aberrant activation of Wnt/ß-catenin signaling pathway. In addition, ACACA expression was associated with the dilute infiltration of immune cells including plasmacytoid DC (pDC) and cytotoxic cells by utilization of relevant database analysis. CONCLUSION: ACACA could be a potential biomarker and molecular target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Prognóstico , Proteínas/metabolismo
17.
Eur J Med Res ; 28(1): 46, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707911

RESUMO

BACKGROUND: RNA methylation (RM) is a crucial post-translational modification (PTM) that directs epigenetic regulation. It mostly consists of N1-methyladenosine (m1A), 5-methylcytosine (m5C), N3-methylcytidine (m3C), N6-methyladenosine (m6A), and 2'-O-methylation (Nm). The "writers" mainly act as intermediaries between these modifications and associated biological processes. However, little is known about the interactions and potential functions of these RM writers in hepatocellular carcinoma (HCC). METHODS: The expression properties and genetic alterations of 38 RM writers were assessed in HCC samples from five bioinformatic datasets. Two patterns associated with RM writers were identified using consensus clustering. Then, utilizing differentially expressed genes (DEGs) from different RM subtypes, we built a risk model called RM_Score. Additionally, we investigated the correlation of RM_Score with clinical characteristics, tumor microenvironment (TME) infiltration, molecular subtypes, therapeutic response, immunotherapy effectiveness, and competing endogenous RNA (ceRNA) network. RESULTS: RM writers were correlated with TME cell infiltration and prognosis. Cluster_1/2 and gene.cluster_A/B were shown to be capable of distinguishing the HCC patients with poor prognosis after consensus and unsupervised clustering of RNA methylation writers. Additionally, we constructed RNA modification pattern-specific risk model and subdivided the cases into RM_Score high and RM_Score low subgroups. In individual cohorts or merged datasets, the high RM_Score was related to a worse overall survival of HCC patients. RM_Score also exhibited correlations with immune and proliferation related pathways. In response to anti-cancer treatments, the RM_Score had a negative correlation (drug sensitive) with drugs that focused on the MAPK/ERK and metabolism signaling, and a positive correlation (drug resistant) with compounds targeting RKT and PI3K/mTOR signaling pathway. Notably, the RM_Score was connected to the therapeutic effectiveness of PD-L1 blockage, implying that RM writers may be the target of immunotherapy to optimize clinical outcomes. Additionally, a ceRNA network was generated including 2 lncRNAs, 4 miRNAs, and 7 mRNAs that was connected to RM writers. CONCLUSIONS: We thoroughly investigated the potential functions of RNA methylation writers and established an RM_patterns-based risk model for HCC patients. This study emphasized the critical functions of RM modification in TME infiltration, targeted therapy, and immunotherapy, providing potential targets for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Metilação , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Epigênese Genética/genética , Neoplasias Hepáticas/genética , Prognóstico , Microambiente Tumoral
18.
Int J Biol Macromol ; 226: 267-278, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36495996

RESUMO

Two shapes of ZnO clusters constructed by the growth of spindle-like (I-ZnO) and sheet-like (II-ZnO) microparticles added to Locust bean gum/carboxycellulose nanocrystal (LBG/C-CNC) coating for improving properties as the enhancers and antibacterial agents. Subsequently, active LBG/C-CNC/ZnO (LCZ) coatings were evaluated to combat the fruits rot triggered by microorganisms aiming to extend their shelf life. The results showed that II-ZnO clusters with flower-shape enhanced the properties more obviously due to more interaction sites. The oxygen and water vapor permeability of the coating containing 5 % II-ZnO (LCZII-5) decreased from 2.00 and 5.98 × 10-11 to 0.6 cm3 mm m-2 day-1 atm-1 and 1.85 × 10-11 g m-1 s-1 Pa-1, respectively. And the antibacterial rate against E. coli and S. aureus could reach more than 75 %. Meanwhile, the tensile strength (TS) increased by 50.95 %. The inhibition rates on strawberries of weight and Vc loss by LCZII-5 coating were 30.64 % and 53.59 %, respectively. More importantly, the coatings could be easily washed off with water in spite of tightly being connected with the surface of the strawberries. As was expected, this study provides a feasible method for preparing novel fruit coatings with an effective preservation.


Assuntos
Celulose Oxidada , Fragaria , Nanopartículas , Óxido de Zinco , Conservação de Alimentos/métodos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Escherichia coli , Staphylococcus aureus , Nanopartículas/química
19.
Biol Proced Online ; 24(1): 21, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460966

RESUMO

PURPOSE: A variety of studies have connected circadian rhythm to the initiation and progression of hepatocellular carcinoma (HCC). The purpose of this study was to figure out about the circadian genes' profile characteristics, prognostic significance, and targeted values in HCC. METHODS: The expression profiles and prognostic significance of circadian genes in the cancer genome atlas liver hepatocellular carcinoma (TCGA-LIHC) database were investigated using bioinformatics analysis. The expression features of Casein Kinase 1 Delta (CSNK1D), a robust signature gene, was further detected by immunohistochemistry, western blotting and Real-time quantitative PCR (RT-qPCR) in a local HCC cohort. The effect of CSNK1D on corresponding phenotypes of HCC cells was evaluated using Cell Counting Kit-8 (CCK8), flowcytometry, clone assay, Transwell assay, and xenograft assay. In addition, the underlying mechanisms of CSNK1D in the Wnt/ß-catenin signaling were validated by multiple molecular experiments. RESULTS: Abnormal expression of the Circadian genome was associated with the malignant clinicopathological characteristics of HCC patients. A 10 circadian gene-based signature with substantial prognostic significance was developed using Cox regression and least absolute shrinkage and selection operator (LASSO) analysis. Of them, CSNK1D, significantly elevated in a local HCC cohort, was chosen for further investigation. Silencing or overexpression of CSNK1D significantly reduced or increased proliferation, invasion, sorafenib resistance, xenograft development, and epithelial-mesenchymal transformation (EMT) of HCC cells, respectively. Mechanically, CSNK1D exacerbated the aggressiveness of HCC cells by activating Wnt/ß-catenin signaling through interacting with Dishevelled Segment Polarity Protein 3 (DVL3). CONCLUSIONS: The Circadian gene CSNK1D was found to contribute to HCC progression by boosting the Wnt/ß-catenin pathway, hinting that it could be a prospective therapeutic target for HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...